COMP 1 10/L Lecture 12

Maryam Jalali

Some slides adapted from Dr. Kyle Dewey

Qutline

O switch

swlitch

Problem

if is verbose when checking many conditions.

Problem

if is verbose when checking many conditions.

1f (x == 5) {
return “foo”;

b else 1f (x == 06) {
return “bar”;

} else 1f (x == 7)) {
return “baz”;

} else 1f (x == 8) {
return “blah”;

} else |

return “unknown”;

swlitch

switch allows for multiple == conditions to be checked

1f (x == 5) {
return “foo”;

b else 1f (x == 06) {
return “bar”;

} else 1f (x == 7)) {
return “baz”;

} else 1f (x == 8) {
return “blah”;

} else |

return “unknown”;

swlitch

switch allows for multiple == conditions to be checked

1f

(x ==
return
else 1f
return
else 1f
return
else 1f

return
else |
return

5)
\\fOO//;
(pu———
\\bar//;
(pu——
\\baZ//;
(pu———
“blah”;

0) {

“unknown”;

(%) Ao

swiltch
case 5OH:

return
case o0:

return
case /:
return
case 8:
return
default:
return

\\fOO/I;

\\barll;

\\baZII;

“blah”;

“unknown?” ;

Example:
SwitchBasic.java

switch Semantics

® Look at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch Semantics

® Look at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (x) {
case 1:
return “hi”;
case 2:
System.out.println (Ybye”);

default:
System.out.println (Yhuh”);

switch Semantics

® Look at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (1)
case 1:
return “hi”;
case 2:
System.out.println (Ybye”);
default:

System.out.println (Yhuh”);

switch Semantics

® Look at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (1)
, case
return “hi”;
case 2:
System.out.println (Ybye”) ;
default:

System.out.println (“huh”) ;

switch Semantics

® Look at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (1) {

case

> return “hi”;

case 2:
System.out.println (Ybye”) ;

default:
System.out.println (“huh”) ;

switch Semantics

® Look at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (1) {

case

> “hi”;

case 2:
System.out.println (Ybye”) ;

default:

System.out.println (“huh”) ;

switch Semantics

® Look at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (3)
case 1:
return “hi”;
case 2:
System.out.println (Ybye”);
default:

System.out.println (Yhuh”);

switch Semantics

® Look at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (3)
case 1:
return “hi”;
case 2:
System.out.println (Ybye”) ;
» default:

System.out.println (“huh”) ;

switch Semantics

® Look at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (3)
case 1:
return “hi”;
case 2:
System.out.println (Ybye”) ;
default:

> System.out.println (Yhuh”);
J

switch Semantics

® Look at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (3)
case 1:
return “hi”;
case 2:
System.out.println (Ybye”) ;
default:

System.out.println (“huh”) ;

switch Semantics

® Look at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (2)
case 1:
return “hi”;
case 2:
System.out.println (Ybye”);
default:

System.out.println (Yhuh”);

switch Semantics

® Look at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (2)
case 1:
return “hi”;
» Case
System.out.println (Ybye”) ;
default:
System.out.println (“huh”) ;

switch Semantics

® Look at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (2)
case 1:
return “hi”;
case /:
> System.out.println (“bye”);
default:

System.out.println (“huh”) ;

switch Semantics

® Look at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (2)
case 1:
return “hi”;
case /:
System.out.println (Ybye”) ;
default:

> System.out.println (Yhuh”);
J

switch Semantics

® Look at the thing you're switching on

® Jump to the applicable case

® Keep running statements until something stops you

switch (2)
case 1:
return “hi”;
case /:
System.out.println (Ybye”) ;
default:

System.out.println (“huh”) ;
>)

Switch

Example:

a1

chrough. java

Preventing “fall-through”

The break statement will exit out of a switch.

Preventing “fall-through”

The break statement will exit out of a switch.

switch (x) {
case 1:
return “hi”;
case 2:
System.out.println (“Ybye”);

default:
System.out.println (Yhuh”);

Preventing “fall-through”

The break statement will exit out of a switch.

switch (x) {
case 1:
return “hi”;
case 2:
System.out.println (“Ybye”);
break;
default:
System.out.println (Yhuh”);

J

Preventing “fall-through”

The break statement will exit out of a switch.

switch (2) |

case 1:
return “hi”;

case 2:
System.out.println (Ybye”);
break;

default:
System.out.println (Yhuh”);

J

Preventing “fall-through”

The break statement will exit out of a switch.

switch (2) {
case 1:
return “hi”;

, case Z:
System.out.println (Ybye”);
break;

default:
System.out.println (Yhuh”);

J

Preventing “fall-through”

The break statement will exit out of a switch.

switch (2) |

case 1:
return “hi”;

case 2:

> System.out.println (Ybye”);
break;

default:
System.out.println (Yhuh”);

J

Preventing “fall-through”

The break statement will exit out of a switch.

switch (2) |
case 1:
return “hi”;
case 2:
System.out.println (Ybye”);
» Dbreak;
default:
System.out.println (Yhuh”);

J

Preventing “fall-through”

The break statement will exit out of a switch.

switch (2) |
case 1:
return “hi”;
case 2:
System.out.println (Ybye”);
break;
default:
System.out.println (Yhuh”);

>}

Preventing “fall-through”

The break statement will exit out of a switch.
int roll =

swit&(roll)
{

case
printf ("1 am Pankaj®):;
break;

case

printi("I am Nikhil");
break;

case

rintf("1I ac hn"):
> | Dreak
default :

Example:
SwitchBreak. java

Some Important rules for switch statements:

Duplicate case values are not allowed.

The value for a case must be the same data type as the variable in
the switch.

The value for a case must be a constant. Variables are not allowed.
The break statement is used inside the switch to terminate a
statement sequence.

The break statement is optional. If omitted, execution will continue
on into the next case.

A switch works with int and String.

snum = user_input.nextDouble();

ans = fnum - snum;
System.out.println("Answer is:
break;

+ ans);

case 3:
System.out.println("You choose Multiplication");
System.out.print("Enter first num: ");
fnum = user_input.nextDouble();

System.out.print("Enter second num: ");
snum = user_input.nextDouble();

ans = fnum * snum;
System.out.println("Answer is:
break;

+ ans);

case 4:
System.out.println("You choose Divisicn");
System.out.print("Enter first num: ");
fnum = user_input.nextDouble();

System.out.print("Enter second num: ");
snum = user_input.nextDouble();

ans = fnum / snum;
System.out.println("Answer is:
break;

+ ans);

default:
System.out.println("You can choose from number 1 to 4 only");
break;

switchand Testing

Each case is a test candidate, as is default.

switchand Testing

Each case is a test candidate, as is default.

int result = 0;
switch (input) {
case 1:

result = result + 2;
case 2:

result = result + 5;
default:

result = result + 12;

switchand Testing

Each case is a test candidate, as is default.

1nt result = 0;
swlitch (input)
1 case 1:

{

result = result + 2;
case 2:

result = result + 5;
default:

result = result + 12;

switchand Testing

Each case is a test candidate, as is default.

int result = 0;
swlitch (input)
1 case 1:

{

result = result + 2Z;
2 case 2:
result = result + 5;
default:
result = result + 12;

switchand Testing

Each case is a test candidate, as is default.

int result = 0;
swlitch (input)
1 case 1:

{

result = result + 2;
2 case 2:

result = result + 5;
3 default:

result = result + 12;

